3860

Discovery and characterization of novel anti-cancer small molecule inhibitors of Sec61

BACKGROUND

- The Sec61 translocon is the primary mediator for cotranslational translocation of secreted and transmembrane proteins into the endoplasmic reticulum, providing a novel therapeutic target for blocking expression of therapeutically relevant targets such as cytokines, oncogenic receptors, and immune checkpoint molecules (Figure 1)
- Previously described inhibitors of Sec61²⁻⁵ have shown anti-tumor activity but lacked adequate pharmaceutical properties or tolerability for clinical development
- Through a drug discovery program to identify novel inhibitors of Sec61 we identified three distinct chemical scaffolds with differential selectivity and potential for treatment of malignant diseases

METHODS

- Inducible luciferase reporter expression plasmids were created by fusing cDNA encoding Gaussia luciferase to the 3' end of signal sequence + 10 amino acids (SS+10AA), transmembrane domain (TMD) or full length (FL) cDNA of proteins of interest. Expression was induced with doxycycline alongside compound treatment for 24 hours (Figures 2-7)
- Mutant R66I⁶ or wild type (WT) Sec61 was stably overexpressed in HEK293 cells followed by transient transfection with plasmids expressing luciferase reporters (Figure 3)
- Cell viability was measured by CellTiter-Glo[®] after the indicated treatment period (CTG; Figures 3, 5, 6, 7) HCT116 cells were selected for resistance to CT9 generating R66I mutant Sec61 cells⁶. WT and mutant Sec61 cells were exposed to CT8 (positive control), proteasome inhibitor carfilzomib (negative control),
- or test compounds for 48 hours followed by viability measurement as described above (Figure 3) Luciferase reporter plasmids were transiently transfected into Flp-In T-REx[™] 293 cells followed by induction and compound treatment as described above (Figure 4, 8)
- HER3 expression in BT474 breast cancer cells was evaluated after 24 hours of compound treatment by capillary immunoassay (WES-Protein Simple; Figure 6)
- CD4 and PD-1 expression was measured by flow cytometry on T-cells activated with antibodies to CD3 and CD28 alongside compound treatment for 24 hours (Figure 7)
- PD-1, LAG3, TIM3, and CD96 expression was measured by flow cytometry on PBMCs stimulated with antibodies to CD3 and CD28 for 72 hours followed by 24 hour compound treatment (Figure 8)
- Previously frozen human PBMCs and fresh whole blood (n=3 donors) were treated with compound for 20 hours followed by flow cytometry analysis (Figure 9)
- Cytokine levels were measured in human PBMCs (n=3 donors) stimulated with antibodies to CD3 and CD28 (GM-CSF, IFN- γ , TNF- α) or LPS (IL-6, IL-23) alongside compound treatment for 24 hours via Meso Scale Discovery electrochemiluminescent detection (MSD; Figure 9)
- BALB/c mice (n=5) were dosed with KZR-9098 2 hours prior to administration of LPS. Samples were collected 2 hours later and serum TNF- α levels were measured by MSD (Figure 10)
- BALB/c mice were dosed as indicated followed by whole blood collection and flow cytometry analysis 20 hours later (Figure 10)

Screening Workflow

Primary Screen	Selectivity Screen		<u>Counterscreens</u>	Potency Evaluation
Inhibitors of	> 40 reporters	\mapsto	Cytosolic Firefly-luc,	Anti-tumor activity
Targets 1 & 2	(e.g. PD-1, IL-2,		Mutant R66I Sec61,	Surface marker expression,
reporters	TNF-α <i>,</i> HER3)		Normal cell cytotoxicity	Pharmacologic properties

Eric Lowe¹, Janet L. Anderl¹, Yazmin Carrasco², R. Andrea Fan¹, Ying Fang¹, Jing Jiang¹, Henry W.B. Johnson¹, Christopher J. Kirk¹, Dustin McMinn¹, Tony Muchamuel¹, Meera Rao¹, Phillip P. Sharp², Jack Taunton², Jinhai Wang¹, Jennifer A. Whang¹.

Unstimulated

KZR-9039 (1uM)

Stimulated

¹Kezar Life Sciences, Inc. South San Francisco, CA; ²Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA

- and secreted proteins can be achieved in-vitro and in-vivo
- Multiple chemical scaffolds are able to act as broad and selective inhibitors of Sec61 function resulting in reduced expression of key targets in autoimmune/inflammatory, immuno-oncology, and oncology indications

REFERENCES

- 1. Maifeld, et al. *Cell Chem. & Bio.* 2011, 18: 1082
- 2. Garrison, et al. *Nature.* 2005, 436: 285
- 3. Paatero, et al. Cell Chem. & Bio. 2016, 23: 561

4. Juune, et al. *J. Cell Sci.* 2015, 128: 1217 5. Baron, et al. J. Exp. Med. 2016, 213: 2885 6. MacKinnon, et al. *eLIFE*. 2014, 3:e01483