Healthcare Resource Utilization and Costs of Management of Lupus Nephritis in Adult and Juvenile Patients with Systemic Lupus Erythematosus

Kenneth Kalunian,¹ Janice Ma,² Konrad Pisarczyk,² Richard Leff,³ Kiruthi Palaniswamy,³ Li Long³

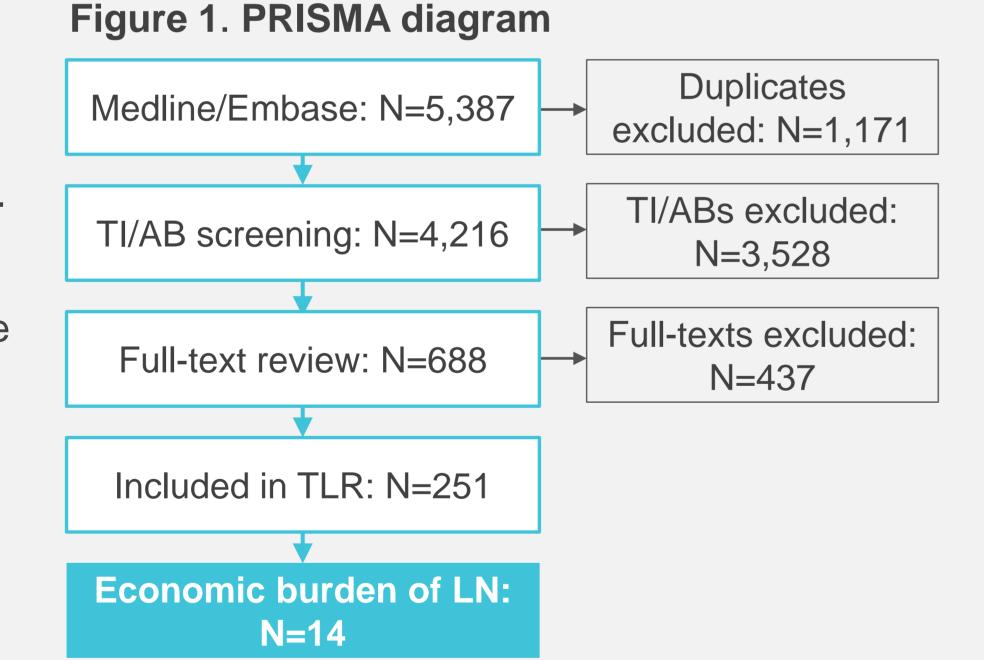
¹University of California San Diego School of Medicine, CA, USA; ²Maple Health Group, LLC, New York, NY, USA; ³Kezar Life Sciences Inc., South San Francisco, CA, USA

黨

Background/Objectives

- LN is a serious manifestation of SLE, with considerable morbidity, including an increased risk of end-stage kidney disease (ESKD), that may impose a substantial economic burden on the healthcare system.
- For patients with refractory LN, disease outcomes may be worse compared to those without refractory disease, 1,2 further impacting costs and resource use.
- The objective of our study was to review and qualitatively summarize the evidence on costs and healthcare resource utilization (HCU) in patients with LN.

O

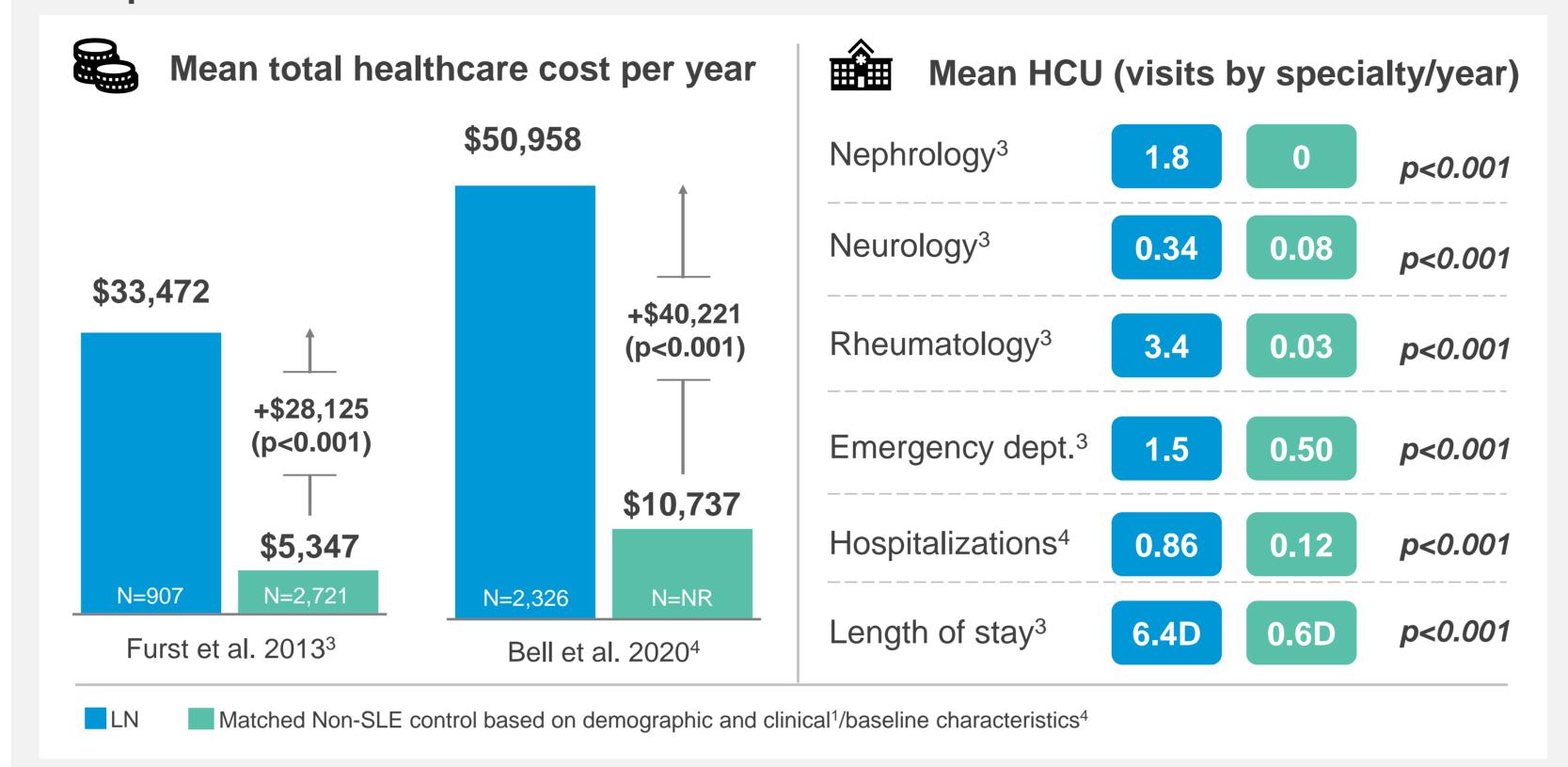

Methods

- A targeted literature review (TLR) was conducted in MEDLINE/Pubmed and Embase in adult and juvenile patients with diagnosed LN.
- Search strategies were developed to identify relevant peer-reviewed articles published in English between March 2012 and March 2022, and conference abstracts indexed in Embase since 2019.
- All records were screened by a single reviewer according to pre-specified inclusion and exclusion criteria.
- The current poster summarizes data on costs and HCU associated with management of adults and children with LN in clinical practice.

Of 4,216 records identified in the medical databases, 14 studies³⁻¹⁶ reported on real-world costs and HCU in patients with LN (Figure 1).

 The majority of studies were conducted in adult patients from the United States (USA) (n=9) or Sweden (n=2). The remaining studies included juvenile (n=1) or both adult and juvenile patients (n=2).

Results


Economic burden of LN in the USA

- In the USA, adult SLE patients with LN had significantly higher utilization of outpatient visit-related services and more hospitalization-based events per year with approximately 6-day longer length of stay (LOS), compared to matched patients without SLE³ (**Figure 2**).
- Mean healthcare costs of LN management ranged from \$33,500 to \$51,000 per year,³⁻⁵ roughly 5-7-times higher compared with matched non-SLE controls (p<0.05) (**Figure 2**).^{3,4}
- The cost of care in LN was driven by inpatient stays^{3,6} with one study reporting significantly higher average cost of hospitalization compared to patients with SLE without LN (\$11,200 vs \$9,109, respectively; p<0.001).⁷

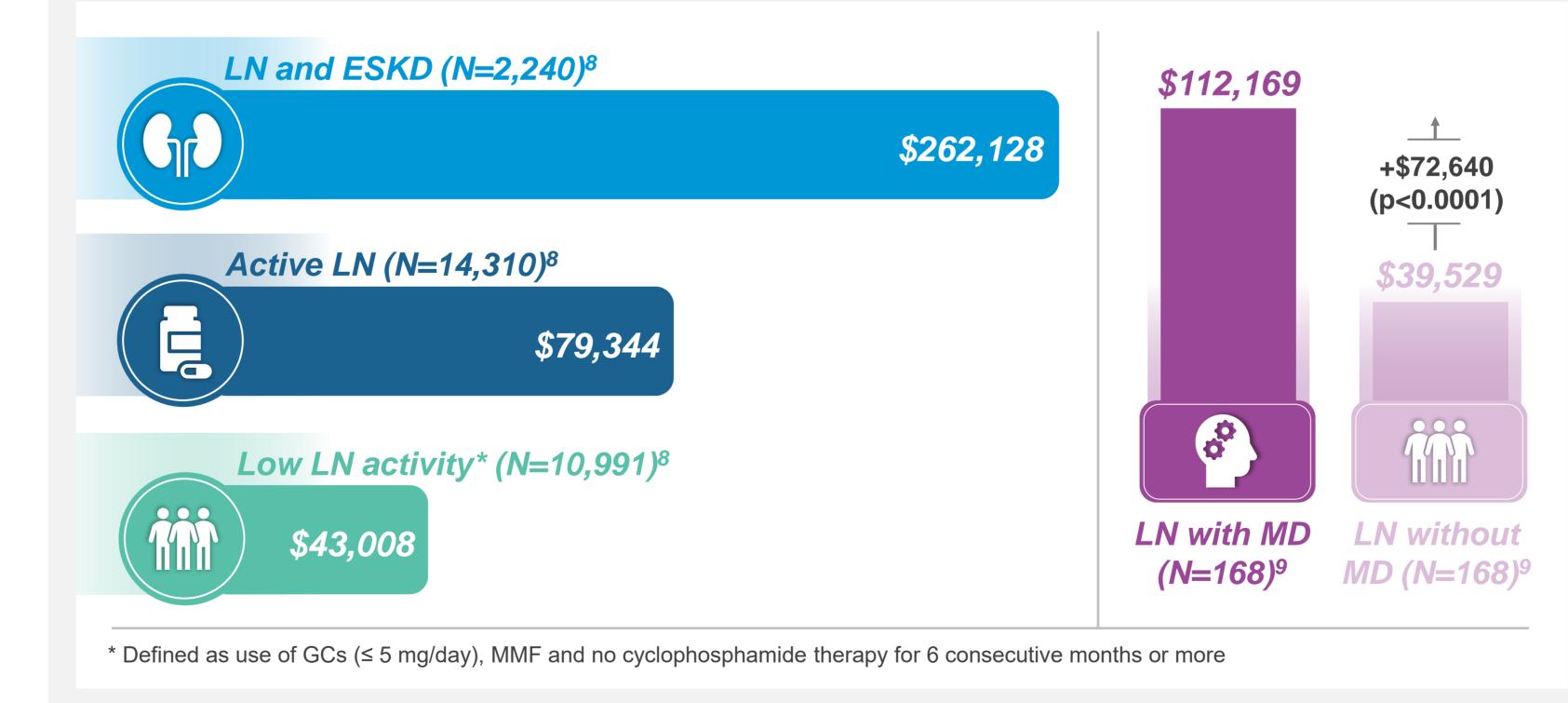

Results (cont'd)

Figure 2. LN leads to significant excess healthcare costs and resource utilization compared to non-SLE controls.

- Active LN and ESKD further increased mean annual healthcare costs associated with LN to approximately \$79,000 and \$262,000, respectively⁸ (Figure 3).
- Comorbid mental disorders (depression, anxiety, bipolar disorder or psychosis) significantly increased LN management cost by more than \$72,000 per patient/year compared to patients with LN without mental disorders (p<0.0001)⁹ (**Figure 3**).

Figure 3. Active LN, development of ESKD and mental disorders (MD) are associated with significant mean annual all-cause healthcare cost increase for patients with LN.

- When hospitalized, juvenile patients with LN had longer LOS by up to 1.6 days^{10,11} on average compared to patients with SLE without LN receiving inpatient care (p=0.0001).¹⁰
- Mean hospitalization costs of juvenile LN was estimated at \$43,100 in 2006 and exceeded SLE-only inpatient care costs by \$14,600, driven by management of acute kidney failure, followed by kidney transplant and ESKD.¹¹

Results (cont'd)

Economic burden of LN in Sweden

- Total direct costs and its components (inpatient, pharmaceutical) were significantly higher in patients with SLE with nephritis than in those without nephritis (p<0.05) (**Table 1**). 12,13
- Patients with LN incurred higher mean annual total, direct and indirect cost (Swedish krona [SEK] 229,000) compared to SLE patients with arthritis (SEK 193,000) or with malar rash (SEK 182,000).¹²

Table 1. LN patients incur significantly higher direct and indirect healthcare costs and compared to patents with SLE only

Outcome ¹³		SLE + LN (N=321)	SLE (N=1,023)	Cost/HCU increase
Mean cost per year (USD 2011*)	Total cost	\$39,284	\$33,369	+\$5,190 (p<0.05)
	Direct cost	\$14,190	\$10,188	+\$4,002 (<0.001)
	Inpatient	\$8,243	\$5,906	+\$2,337 (p=NR)
	Outpatient	\$3,110	\$2,220	+ \$890 (p=NR)
	Pharmacuticals	\$2,837	\$2,062	+\$775 (p=NR)
	Indirect cost	\$25,094	\$23,181	+\$1,913 (p=0.003)

* Costs were adjusted to 2011 consumer price index and converted to 2011 USD with ECB currency exchange rate of 1 SEK = \$0.16 USD

-<u>Ö</u>

Conclusions

- Patients with LN have increased costs of care compared to patients with SLE only and controls without SLE in the US and Europe.
- The direct healthcare costs are especially increased in patients with active disease and those with ESKD.
- There is a high unmet need for effective therapies to treat LN, prevent its complications, and reduce economic burden on healthcare systems.

References

1. Yo JH, et al. Open Access Rheumatol. 2019;11:179-188. 2. Kronbichler A, et al. Autoimmun Rev. 2019;18(5):510-518. 3. Furst DE, et al. J Med Econ. 2013;16(4):500-509.4. Bell C, et al. J Am Soc of Nephrol. 2020;31:553. 5. Bartels-Peculis L, et al. Open Access Rheumatol. 2020;12:117-124. 6. Bell CF, et al. J Am Soc of Nephrol. 2021;32:454. 7. Gupta S, et al. Arthritis Rheumatol. 2021; 73 (suppl 10). 8. Dall'era M, et al. Annals of the Rheumatic Diseases. 2021;80:595. 9. Petri MA, et al. Annals of the Rheumatic Diseases 2021;80:377-378. 10. Knight AM, et al. J Rheumatol. 2014;41(3):539-546. 11. Tanzer M, et al. Arthritis Care Res (Hoboken). 2013;65(3):382-390. 12. Jönsen A, et al. Lupus. 2015;24(12):1248-1256. 13. Jönsen A, et al. Semin Arthritis Rheum. 2016;45(6):684-690.14. Edigin E, et al. J Am Soc Nephrol.2020;31:595. 15. Feldman H, et al. Arthritis and Rheumatology.2018;70(3):417-426. 16. Katz P, et al. J Manag Care Spec Pharm. 2020;26(3):275-283.

Author Disclosures and Acknowledgements

K. Kalunian: Consultant for AbbVie/Abbott, Amgen, AstraZeneca, Aurinia, Biogen, BMS, Eli Lilly, Equillium, Genentech, Gilead, Janssen Kezar Life Sciences, and Roche; Grant/research support from Lupus Research Alliance, Pfizer, and Sanford Consortium; J. Ma: None;
K. Pisarczyk: None; R. Leff: Kezar Life Sciences, K. Palaniswamy: Kezar Life Sciences; L. Long: Kezar Life Sciences.