KZR-616, A Selective Inhibitor of the Immunoproteasome, Attenuates the Development of Murine Lupus Nephritis

Tony Muchamuel, Janet L Anderl, R Andrea Fan, Henry W B Johnson, Eric Lowe, Christopher J Kirk

Disclosures

Employee and Shareholder of Kezar Life Sciences

The Proteasome: Primary Means of Intracellular Protein Degradation

Regulatory cap

Proteolytic core

Regulatory cap

J. Struct. Biol. 1998, 121, 19.

- Ubiquitously expressed and highly conserved
- Controls cellular functions via protein degradation
 - Degradation of misfolded/damaged proteins
 - Regulates cellular function (e.g. cell cycle) via targeted protein degradation
- Validated target in plasma cell neoplasms
 - Bortezomib (VELCADE®)
 - Carfilzomib (KYPROLIS®)
 - Ixazomib (NINLARO®)
- 2 major forms of the 20S core
 - Constitutive proteasome
 - Immunoproteasome

The Immunoproteasome is a Unique Form of the Proteasome

Chymotrypsin-like (CT-L):

1° Targets of approved proteasome inhibitors
(bortezomib/carfilzomib/ixazomib)
(BTZ/CFZ/IXA)

Targets of KZR-616

Unique N-terminal Threonine protease active sites

Ubiquitous Expression (e.g. Heart and Liver)

Immune System (e.g. lymphocytes)

- Immunoproteasome active site subunits induced in non-immune cells upon exposure to inflammatory cytokines (e.g. IFN-y)
- Expression is increased in multiple autoimmune disorders

Distinct Cellular Effects of Dual Proteasome Inhibition vs. Selective Immunoproteasome Inhibition

Dual-Targeting Proteasome Inhibitors

Selective Immunoproteasome Inhibitors

. KEZAR

Parlati et al. Blood 2009

Muchamuel et al Nat Med 2009, Ichikawa et al. Arthritis and Rheumatism 2011, Khalim et al. JI 2012

Rapid Improvement in Systemic Lupus Erythematosus (SLE) Symptoms and Lupus Nephritis (LN) Disease Seen with Bortezomib Therapy

Baseline: 14

Post BTZ: 4

- Durable reduction in SLEDAI improvements
- Reintroduction of other therapies maintains responses

- Median proteinuria
 - Baseline: 2.2 g/day
 - Post BTZ: 0.87 g/day
- Continued reduction in proteinuria seen post treatment
- AEs occurred in 92% of patients and 58% discontinued due to AEs

Immunoproteasome Inhibition Replicates the Activity of Bortezomib in Mouse Models of SLE and LN

- Selective immunoproteasome inhibition (ONX 0914) resulted in equivalent efficacy as dual inhibitors
- Therapeutic benefit of ONX 0914 seen at sub-maximum tolerated doses (MTD)
- Equivalent improvements in autoantibody reduction, blockade of IFN- α production and reduced antibody secreting cell (ASC) formation

KZR-616 Blocks Inflammatory Cytokine Production In Vitro

KZR-616 Blocks LN Disease Progression in NZB/W F1 Mice

KZR-616 Treatment in NZB/W F1 Mice Reduces Plasma Cell Formation

KZR-616 Treatment Results in Inhibition of Immune Response Pathways

Genes Inhibited

Log2 FC cutoff	FDR cutoff/P value
1	0.001, p<0.1
	# Genes at Cutoff
Spleen	1222
Kidnev	919

Most Significant Gene Ontologies Inhibited

- immune response
- immune system process
- external side of plasma membrane
- cell surface

Weeks of Age

- leukocyte activation
- MHC class II
- cell activation
- regulation of lymphocyte activation
- antigen processing and presentation of exogenous lymphocyte activation
- antigen processing and presentation
- regulation of T cell activation

KZR-616 Treatment Modulates Multiple Immune Response Pathways in the Kidneys of Diseased Mice

Top Canonical and Disease Functions Modulated in the Spleen and Kidney of KZR-616 Treated NZB/W F1 Mice

-7.131 6.326

Mice Treated with KZR-616 Showed Broad Reduction of Inflammatory Cytokine and Chemokine Gene Expression in the Kidneys

KZR-616 Treatment in Mice Inhibits Genes Upregulated in the Glomerulus and Tubulointerstitium of LN Patients

Comparison of Pathway Changes in Kidneys to KZR-616 Treatment with Various Lupus Models and Therapeutic Agents

KZR-616 Reduces Splenic Expression of Genes Associated with ASC Generation and Plasma Cell Differentiation

KZR-616 Synergizes with MMF in NZB/W F1 Mice and Induces Selective Inhibition of the Immunoproteasome in Healthy **Volunteers**

Mouse Model Efficacy

Phase 1 Healthy Volunteers

KZR-616-002: A Phase 1b/2 Study of KZR-616 in SLE and LN Patients

Summary of KZR-616 Effects in Mouse Models of Lupus

- Highly active in the NZB/W F1 mouse model of SLE/LN
 - Complete resolution of proteinuria
 - Reduced autoantibody levels
 - Reduced renal IgG deposition
 - Prolonged renal response in mice even after treatment withdrawal
- Effect due in part to depletion of activated B-cells and plasma cells
- Gene expression profiling reveals inhibition of multiple pathways
 - Down regulation of multiple immune response pathways
 - Glomerular and tubulointerstitial renal pathology
 - Decreases multiple cytokines and chemokines in spleen and kidney
 - Plasma cell differentiation and ASC generation
- Synergizes with MMF in NZB/W F1 mice
- KZR-616 is currently being evaluated in a Phase 1b/2 trial in SLE and LN

4/9/2019

Acknowledgements

Pharmacology
Jing Jiang

Biology
Andrea R Fan
Eric Lowe
Janet L Anderl
Brian Tuch

Medicinal Chemistry
Henry WB Johnson
Dustin McMinn

<u>Clinical</u> Darrin Bomba

